Algebra I

80 Points

Notes.

(a) This exam is for the duration of two and a half hours only.

(b) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(c) \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(d) \mathbb{Z}_n = the set of integers modulo n, $(\mathbb{Z}_n)^{\times}$ = the set of those integers in \mathbb{Z}_n that are coprime to n.

(e) For any element a in a group G, o(a) denotes the order of the element.

1. [12 points] Suppose $f \colon \mathbb{R} \to \mathbb{R}$ is a function such that for every $x \in \mathbb{R}$, $f^{-1}(x)$ is a countable set (possibly empty). Prove that there are uncountably many $\alpha \in \mathbb{R}$ such that $f(\alpha)$ is irrational.

2. [12 points] Prove or disprove the following statement: Any total order on \mathbb{N} is a well order. This means you should either provide a proof of the above statement or disprove it by giving an example of a total order on \mathbb{N} which is not a well order.

3. [12 points] Verify that 293 is invertible in $(\mathbb{Z}_{929})^{\times}$ and find its multiplicative inverse.

4. [12 points] Let a_n denote the number of elements of the set $\{\sigma \in S_7 \mid o(\sigma) = n\}$ where S_7 is the symmetric group on 7 symbols. Calculate a_2, a_6, a_8 and a_{12} .

5. [16 points]

- (i) If every element of a group G has order 2, prove that G is abelian.
- (ii) Give an example of a group G and two elements $a, b \in G$ such that o(a) = 2 = o(b) while o(ab) = 6.

6. [16 points] Let G be a cyclic group of order n. Prove that every subgroup of G is cyclic and prove that for every positive integer d dividing n, there is a unique subgroup of order d.